CrossValidator
- CrossValidator is an Estimator for model tuning, i.e. finding the best model for given parameters and a dataset.
- CrossValidator splits the dataset into a set of non-overlapping randomly-partitioned numFolds pairs of training and validation datasets.
- CrossValidator generates a CrossValidatorModel to hold the best model and average cross-validation metrics.
val paramGrid = new ParamGridBuilder()
.addGrid(rf.impurity, Array("entropy", "gini"))
.build()
val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(3)
val model = cv.fit(training)
val predictions = model.transform(test)
predictions.show()