Spark MLlIb: Train and Evaluate Logistic Regression Model

1) Train Model
val lr = new LogisticRegression()
.setMaxIter(100)
.setRegParam(0.3)
.setElasticNetParam(0.5)
//Train Model
val model = lr.fit(trainingData)
println(s"Coefficients: ${model.coefficients} Intercept: ${model.intercept}")
//Make predictions on test data
val predictions = model.transform(testData)

2) Evaluation
//Evaluate the precision and recall
val countProve = predictions.where("label == prediction").count()
val count = predictions.count()
println(s"Count of true predictions: $countProve Total Count: $count")